Material Variances - Formula Review - Illustration
Working Table
Factually, our problem solving capability is limited by our ability to interpret the problem. Whatever may be the way the problem is presented (what we call problem models), if we can arrange the information into the working table, the rest of the task becomes easy.
Understanding the meaning of the variance helps derive the formula for calculating the variance even if we fail recollecting.
Recalculating Standards
Building the following working table amounts to recalculating standards for both actual inputs and actual outputs. It enables us to use the simplest formulae involving costs for deriving the variances. It helps us solve almost all problems in a similar manner.Standard | Actual | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
for SO | for AO | for AI | ||||||||
SQ | SP | SQ(AO) | SC(AO) | SQ(AI) | SC(AI) | AQ | AP | AC | SC(AQ) | |
Factor | (AO) | (AI) | ||||||||
Material A Material B Material C | SQA SQB SQC | SPA SPB SPC | SQ(AO)A SQ(AO)B SQ(AO)C | SC(AO)A SC(AO)B SC(AO)C | SQ(AI)A SQ(AI)B SQ(AI)C | SC(AI)A SC(AI)B SC(AI)C | AQA AQB AQC | APA APB APC | ACA ACB ACC | SC(AQ)A SC(AQ)B SC(AQ)C |
Total | SQMix | SPMix | SQ(AO)Mix | SC(AO)Mix | SQ(AI)Mix | SC(AI)Mix | AQMix | APMix | ACMix | SC(AQ)Mix |
Output | SO | SO(AO) | SO(AI) | AO |
Output (_O) is in units, Quantities (_Q) and Losses (_L) are in kgs, Prices (_P) are in monetary value per kg and Costs (_C) are in monetary values.
1. | SQ(AO) | = | SQ ×
|
2. SC(AO) = SQ(AO) × SP
3. SO(AO) = AO
4. | SQ(AI) | = | SQ ×
|
5. SC(AI) = SQ(AI) × SP
6. | SO(AI) | = | SO ×
|
7. SC(AQ) = AQ × SP
Wish not to recalculate standards
In the formulae, use the adjustment factorsAO |
SO |
AI |
SI |
Additionally using Q × P for C in the formulae may eliminate the need to build the cost column in the working table.
Formulae
Material | |||||
MCV MPV MQV/MUV MMV MYV/MSUV | = = = = = | SC(AO) SC(AQ) SC(AO) SC(AI) SC(AO) | − − − − − | AC AC SC(AQ) SC(AQ) SC(AI) | Cost Variance Price Variance Quantity/Usage Variance Mix Variance Yield/Sub-Usage Variance |
We can derive all other forms of the formulae from these.
- Keeping the suffix attached to quantity, replace
- SC with SQ × SP
- AC with AQ × AP
Eg : SC(AO) − AC, gives SQ(AO) × SP − AQ × AP
- To use formulae without having to recalculate standards, additionally replace
- (AO) with ×
AO SO - (AI) with ×
AI SI - (AQ) with ×
(whereby SC(AQ) gives AQ × SP)AQ SQ
SQ(AO) × SP, gives SQ ×
× SPAO SO - (AO) with ×
Where there are two or more materials being used, formulae containing the expression AQ × SP should not be used for calculating the variance for the mix.
Problem
During a particular production period, the organisation has utilised 2,800 kgs of X purchased @ 12/kg, 2,100 kgs of Y purchased @ 11/kg and 800 kgs of Z purchased @ 16/kg for manufacture. The loss incurred was 594 kgs of total input.
Calculate all possible variances relating to materials.
Working Table
Standard | Actual | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
for SO | for AO | for AI | ||||||||
SQ | SP | SQ(AO) | SC(AO) | SQ(AI) | SC(AI) | AQ | AP | AC | SC(AQ) | |
Factor | 1.85 | 1.9 | ||||||||
Material X Material Y Material Z | 1,500 1,000 500 | 10 12 15 | 2,775 1,850 925 | 27,750 22,200 13,875 | 2,850 1,900 950 | 28,500 22,800 14,250 | 2,800 2,100 800 | 12 11 16 | 33,600 23,100 12,800 | 28,000 25,200 12,000 |
Total | 3,000 | 5,550 | 63,825 | 5,700 | 65,550 | 5,700 | 69,500 | 65,200 | ||
(−) Loss Standard Actual | 240 | 594 | ||||||||
Net | 2,760 | 5,106 | ||||||||
Output | 2,760 SO | 5,106 SO(AO) | 5,244 SO(AI) | 5,106 AO |
Output (_O) is in units, Quantities (_Q) and Losses (_L) are in kgs, Prices (_P) are in monetary value per kg and Costs (_C) are in monetary values.
Standard Loss
SQL | = | 8% of total standard input |
= | SQMix × 8% | |
= | 3,000 × 8% | |
= | 240 |
Standard Output
SO | = | SQMix − SQL |
= | 3,000 − 240 | |
= | 2,760 |
Actual Loss
AQL = 594 (given)
Actual Output
AO | = | AQMix − AQL |
= | 5,700 − 594 | |
= | 5,106 |
(AO) | = |
| ||
= |
| |||
= | 1.85 |
(AI) | = |
| ||
= |
| |||
= |
| |||
= | 1.9 |
1. | SQ(AO) | = | SQ ×
| ||
= | SQ × 1.85 |
2. SC(AO) = SQ(AO) × SP
3. SO(AO) = AO
4. | SQ(AI) | = | SQ ×
| ||
= | SQ × 1.9 |
5. SC(AI) = SQ(AI) × SP
6. | SO(AI) | = | SO ×
|
7. SC(AQ) = AQ × SP
8. NSQ = SQ − SQL
9. NAQ = AQ − AQL
Solution
Material Cost Variance
MCV = SC(AO) − AC
Material Cost Variance due to
Material X, | ||||
MCVX | = | SC(AO)X − ACX | ||
= | 27,750 − 33,600 | = | − 5,850 [Adv] | |
Material Y, | ||||
MCVY | = | SC(AO)Y − ACY | ||
= | 22,200 − 23,100 | = | − 900 [Adv] | |
Material Z, | ||||
MCVZ | = | SC(AO)Z − ACZ | ||
= | 13,875 − 12,800 | = | + 1,075 [Fav] | |
TMCV or MCVMix | = | − 5,675 [Adv] | ||
Material Mix, | ||||
MCVMix | = | SC(AO)Mix − ACMix | ||
= | 63,825 − 69,500 | = | − 5,675 [Adv] |
Material Price Variance
MPV = SC(AQ) − AC
Material Price Variance due to
Material X, | ||||
MPVX | = | SC(AQ)X − ACX | ||
= | 28,000 − 33,600 | = | − 5,600 [Adv] | |
Material Y, | ||||
MPVY | = | SC(AQ)Y − ACY | ||
= | 25,200 − 23,100 | = | + 2,100 [Fav] | |
Material Z, | ||||
MPVZ | = | SC(AQ)Z − ACZ | ||
= | 12,000 − 12,800 | = | − 800 [Adv] | |
TMPV | = | − 4,300 [Adv] | ||
Material Mix, | ||||
MPVMix | = | SC(AQ)Mix − ACMix | ||
= | 65,200 − 69,500 | = | − 4,300 [Adv] |
Material Quantity/Usage Variance
MQV/MUV = SC(AO) − SC(AQ)
Material Quantity/Usage Variance due to
Material X, | ||||
MQV/MUVX | = | SC(AO)X − SC(AQ)X | ||
= | 27,750 − 28,000 | = | − 250 [Adv] | |
Material Y, | ||||
MQV/MUVY | = | SC(AO)Y − SC(AQ)Y | ||
= | 22,200 − 25,200 | = | − 3,000 [Adv] | |
Material Z, | ||||
MQV/MUVZ | = | SC(AO)Z − SC(AQ)Z | ||
= | 13,875 − 12,000 | = | + 1,875 [Fav] | |
TMQV/TMUV | = | − 1,375 [Adv] | ||
Material Mix, | ||||
MQV/MUVMix | = | SC(AO)Mix − SC(AQ)Mix | ||
= | 63,825 − 65,200 | = | − 1,375 [Adv] |
Material Mix Variance
MMV = SC(AI) − SC(AQ)
Material Mix Variance due to
Material X, | ||||
MMVX | = | SC(AI)X − SC(AQ)X | ||
= | 28,500 − 28,000 | = | + 500 [Fav] | |
Material Y, | ||||
MMVY | = | SC(AI)Y − SC(AQ)Y | ||
= | 22,800 − 25,200 | = | − 2,400 [Adv] | |
Material Z, | ||||
MMVZ | = | SC(AI)Z − SC(AQ)Z | ||
= | 14,250 − 12,000 | = | + 2,250 [Fav] | |
TMMV | = | + 350 [Fav] | ||
MMVMix | = | SC(AI)Mix − SC(AQ)Mix | ||
= | 65,550 − 65,200 | = | + 350 [Fav] |
Material Yield Variance
MYV/MSUV = SC(AO) − SC(AI)
Material Yield/Sub-Usage Variance due to
Material X, | ||||
MYV/MSUVX | = | SC(AO)X − SC(AI)X | ||
= | 27,750 − 28,500 | = | − 750 [Adv] | |
Material Y, | ||||
MYV/MSUVY | = | SC(AO)Y − SC(AI)Y | ||
= | 22,200 − 22,800 | = | − 600 [Adv] | |
Material Z, | ||||
MYV/MSUVZ | = | SC(AO)Z − SC(AI)Z | ||
= | 13,875 − 14,250 | = | − 375 [Adv] | |
TMYV/TMSUV | = | − 1,725 [Adv] | ||
Material Mix, | ||||
MYV/MSUVMix | = | SC(AO)Mix − SC(AI)Mix | ||
= | 63,825 − 65,550 | = | − 1,725 [Adv] |
Solution (minimal detail)
Material Cost Variance
MCV = SC(AO) − AC
Material X, Material Y, Material Z, | 27,750 − 33,600 22,200 − 23,100 13,875 − 12,800 | = = = | − 5,850 [Adv] − 900 [Adv] + 1,075 [Fav] |
Mix/Total, | 63,825 − 69,500 | = | − 5,675 [Adv] |
Material Price Variance
MPV = SC(AQ) − AC
Material X, Material Y, Material Z, | 28,000 − 33,600 25,200 − 23,100 12,000 − 12,800 | = = = | − 5,600 [Adv] + 2,100 [Fav] − 800 [Adv] |
Mix/Total, | 65,200 − 69,500 | = | − 4,300 [Adv] |
Material Quantity/Usage Variance
MQV/MUV = SC(AO) − SC(AQ)
Material X, Material Y, Material Z, | 27,750 − 28,000 22,200 − 25,200 13,875 − 12,000 | = = = | − 250 [Adv] − 3,000 [Adv] + 1,875 [Fav] |
Mix/Total, | 63,825 − 65,200 | = | − 1,375 [Adv] |
Material Mix Variance
MMV = SC(AI) − SC(AQ)
Material X, Material Y, Material Z, | 28,500 − 28,000 22,800 − 25,200 14,250 − 12,000 | = = = | + 500 [Fav] − 2,400 [Adv] + 2,250 [Fav] |
Mix/Total, | 65,550 − 65,200 | = | + 350 [Fav] |
Material Yield/Sub-Usage Variance
MYV/MSUV = SC(AO) − SC(AI)
Material X, Material Y, Material Z, | 27,750 − 28,500 22,200 − 22,800 13,875 − 14,250 | = = = | − 750 [Adv] − 600 [Adv] − 375 [Adv] |
Mix/Total, | 63,825 − 65,550 | = | − 1,725 [Adv] |
Solution (alternative presentation)
Material X | Material Y | Material Z | Mix/Total | |
---|---|---|---|---|
MYV/MSUV Material X Material Y Material Z Mix SC(AO) 27,750 22,200 13,875 63,825 − − − − − SC(AI) 28,500 22,800 14,250 65,550 Material X Material Y Material Z Mix SC(AI) 28,500 22,800 14,250 65,550 − − − − − SC(AQ) 28,000 25,200 12,000 65,200 | − 750 + 500 | − 600 − 2,400 | − 375 + 2,250 | − 1,725 + 350 |
MQV/MUV Material X Material Y Material Z Mix SC(AO) 27,750 22,200 13,875 63,825 − − − − − SC(AQ) 28,000 25,200 12,000 65,200 Material X Material Y Material Z Mix SC(AQ) 28,000 25,200 12,000 65,200 − − − − − AC 33,600 23,100 12,800 69,500 | − 250 − 5,600 | − 3,000 + 2,100 | + 1,875 − 800 | − 1,375 − 4,300 |
MCV Material X Material Y Material Z Mix SC(AO) 27,750 22,200 13,875 63,825 − − − − − AC 33,600 23,100 12,800 69,500 | − 5,850 | − 900 | + 1,075 | − 5,675 |
Verification
Verification
Formula | Material X | Material Y | Material Z | Mix/Total | |
---|---|---|---|---|---|
MYV/MSUV + MMV | SC(AO) − SC(AI) SC(AI) − SC(AQ) | − 750 + 500 | − 600 − 2,400 | − 375 + 2,250 | − 1,725 + 350 |
MQV/MUV + MPV | SC(AO) − SC(AQ) SC(AQ) − AC | − 250 − 5,600 | − 3,000 + 2,100 | + 1,875 − 800 | − 1,375 − 4,300 |
MCV | SC(AO) − AC | − 5,850 | − 900 | + 1,075 | − 6,175 |
Simplest
One may use this as the simplest presentation of calculations, since all the amounts used in the formula are present in the working table.If it is for verification purposes, we may avoid the formula column.
Please adopt a presentation based on the examination you are attending, the proportion of marks allotted and time available to/for the problem.