Simple Problem on Material Variances involving two materials
Problem 3
From the data give below, calculate materials variances.
Consumption for 120 units of production | ||
---|---|---|
Raw Materials | Standard | Actual |
A B | 65 units @ 50 per unit 35 units @ 40 per unit | 80 units @ 50 per unit 40 units @ 44 per unit |
A | B | Total | |
---|---|---|---|
MYV/MSUV MMV | − 650 − 100 | − 280 + 80 | − 930 − 20 |
MQV/MUV MPV | − 750 0 | − 200 − 160 | − 950 − 160 |
MCV | − 750 | − 360 | − 1,110 |
Working Notes
The following data could be picked up from the problem
Standard | Actual | |||
---|---|---|---|---|
SQ | SP | AQ | AP | |
Raw Material A Raw Material B | 65 35 | 50 40 | 80 40 | 50 45 |
Output | 120 | 120 |
units : _Q in units, _P in value/unit and _O in units
Working Table
Standard | Actual | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
for SO | for AO | for AI | ||||||||
SQ | SP | SQ(AO) | SC(AO) | SQ(AI) | SC(AI) | AQ | AP | AC | SC(AQ) | |
Factor | 1 | 1.2 | ||||||||
Raw Material A Raw Material B | 65 35 | 50 40 | 65 35 | 3,250 1,400 | 78 42 | 3,900 1,680 | 80 40 | 50 44 | 4,000 1,760 | 4,000 1,600 |
Total/Mix | 100 | 100 | 4,650 | 120 | 5,580 | 120 | 5,760 | 5,600 | ||
Output | 120 SO | 120 SO(AO) | 144 SO(AI) | 120 AO |
Output (_O) is in units, Quantities (_Q) and Losses (_L) are in units, Prices (_P) are in monetary value per unit and Costs (_C) are in monetary values.
Standard Output
SO | = | 120 unit (given) |
Actual Output
AO | = | 120 unit (given) |
(AO) | = |
| ||
= |
| |||
= | 1 |
(AI) | = |
| ||
= |
| |||
= |
| |||
= | 1.2 |
1. | SQ(AO) | = | SQ ×
| ||
= | SQ × 1 |
2. SC(AO) = SQ(AO) × SP
3. SO(AO) = AO
4. | SQ(AI) | = | SQ ×
| ||
= | SQ × 1.2 |
5. SC(AI) = SQ(AI) × SP
6. | SO(AI) | = | SO ×
|
7. SC(AQ) = AQ × SP
Solution
Material Cost Variance
MCV = SC(AO) − AC
Material Cost Variance due to
Raw Material A, | ||||
MCVA | = | SC(AO)A − ACA | ||
= | 3,250 − 4,000 | = | − 750 [Adv] | |
Raw Material B, | ||||
MCVB | = | SC(AO)B − ACB | ||
= | 1,400 − 1,760 | = | − 360 [Adv] | |
TMCV or MCVMix | = | − 1,110 [Adv] | ||
Material Mix, | ||||
MCVMix | = | SC(AO)Mix − ACMix | ||
= | 4,650 − 5,760 | = | − 1,110 [Adv] |
Material Price Variance
MPV = SC(AQ) − AC
Material Price Variance due to
Raw Material A, | ||||
MPVA | = | SC(AQ)A − ACA | ||
= | 4,000 − 4,000 | = | 0 | |
Raw Material B, | ||||
MPVB | = | SC(AQ)B − ACB | ||
= | 1,600 − 1,760 | = | − 160 [Adv] | |
TMPV or MPVMix | = | − 160 [Adv] | ||
Material Mix, | ||||
MPVMix | = | SC(AQ)Mix − ACMix | ||
= | 5,600 − 5,760 | = | − 160 [Adv] |
Material Quantity/Usage Variance
MQV/MUV = SC(AO) − SC(AQ)
Material Quantity/Usage Variance due to
Raw Material A, | ||||
MQV/MUVA | = | SC(AO)A − SC(AQ)A | ||
= | 3,250 − 4,000 | = | − 750 [Adv] | |
Raw Material B, | ||||
MQV/MUVB | = | SC(AO)B − SC(AQ)B | ||
= | 1,400 − 1,600 | = | − 200 [Adv] | |
TMQV/MUV or MQV/MUVMix | = | − 950 [Adv] | ||
Material Mix, | ||||
MQV/MUVMix | = | SC(AO)Mix − SC(AQ)Mix | ||
= | 4,650 − 5,600 | = | − 950 [Adv] |
Material Mix Variance
MMV = SC(AI) − SC(AQ)
Material Mix Variance due to
Raw Material A, | ||||
MMVA | = | SC(AI)A − SC(AQ)A | ||
= | 3,900 − 4,000 | = | − 100 [Adv] | |
Raw Material B, | ||||
MMVB | = | SC(AI)B − SC(AQ)B | ||
= | 1,680 − 1,600 | = | + 80 [Fav] | |
TMMV or MMVMix | = | − 20 [Adv] | ||
Material Mix, | ||||
MMVMix | = | SC(AI)Mix − SC(AQ)Mix | ||
= | 5,580 − 5,600 | = | − 20 [Adv] |
Material Yield/Sub-Usage Variance
MYV/MSUV = SC(AO) − SC(AI)
Material Yield/Sub-Usage Variance due to
Raw Material A, | ||||
MYV/MSUVA | = | SC(AO)A − SC(AI)A | ||
= | 3,250 − 3,900 | = | − 650 [Adv] | |
Raw Material B, | ||||
MYV/MSUVB | = | SC(AO)B − SC(AI)B | ||
= | 1,400 − 1,680 | = | − 280 [Adv] | |
TMYV/MSUV or MYV/MSUVMix | = | − 930 [Adv] | ||
Material Mix, | ||||
MYV/MSUVMix | = | SC(AO)Mix − SC(AI)Mix | ||
= | 4,650 − 5,580 | = | − 930 [Adv] |
Solution (minimal detail)
Material Cost Variance
MCV = SC(AO) − AC
Raw Material A, Raw Material B, | 3,250 − 4,000 1,400 − 1,760 | = = | − 750 [Adv] − 360 [Adv] |
Mix/Total, | 4,650 − 5,760 | = | − 1,110 [Adv] |
Material Price Variance
MPV = SC(AQ) − AC
Raw Material A, Raw Material B, | 4,000 − 4,000 1,600 − 1,760 | = = | 0 − 160 [Adv] |
Mix/Total, | 5,600 − 5,760 | = | − 160 [Adv] |
Material Quantity/Usage Variance
MQV/MUV = SC(AO) − SC(AQ)
Raw Material A, Raw Material B, | 3,250 − 4,000 1,400 − 1,600 | = = | − 750 [Adv] − 200 [Adv] |
Mix/Total, | 4,650 − 5,600 | = | − 950 [Adv] |
Material Mix Variance
MMV = SC(AI) − SC(AQ)
Raw Material A, Raw Material B, | 3,900 − 4,000 1,680 − 1,600 | = = | − 100 [Adv] + 80 [Fav] |
Mix/Total, | 5,580 − 5,600 | = | − 20 [Adv] |
Material Yield/Sub-Usage Variance
MYV/MSUV = SC(AO) − SC(AI)
Raw Material A, Raw Material B, | 3,250 − 3,900 1,400 − 1,680 | = = | − 650 [Adv] − 280 [Adv] |
Mix/Total, | 4,650 − 5,580 | = | − 930 [Adv] |
Solution (alternative presentation)
Raw Material A | Raw Material B | Mix/Total | |
---|---|---|---|
MYV/MSUV Raw Material A Raw Material B Mix SC(AO) 3,250 1,400 4,650 − − − − SC(AI) 3,900 1,680 5,580 Raw Material A Raw Material B Mix SC(AI) 3,900 1,680 5,580 − − − − SC(AQ) 4,000 1,600 5,600 | − 650 − 100 | − 280 + 80 | − 930 − 20 |
MQV/MUV Raw Material A Raw Material B Mix SC(AO) 3,250 1,400 4,650 − − − − SC(AQ) 4,000 1,600 5,600 Raw Material A Raw Material B Mix SC(AQ) 4,000 1,600 5,600 − − − − AC 4,000 1,760 5,760 | − 750 0 | − 200 − 160 | − 950 − 160 |
MCV Raw Material A Raw Material B Mix SC(AO) 3,250 1,400 4,650 − − − − AC 4,000 1,760 5,760 | − 750 | − 360 | − 1,110 |
Verification
Verification
Formula | Raw Material A | Raw Material B | Mix/Total | |
---|---|---|---|---|
MYV/MSUV + MMV | SC(AO) − SC(AI) SC(AI) − SC(AQ) | − 650 − 100 | − 280 + 80 | − 930 − 20 |
MQV/MUV + MPV | SC(AO) − SC(AQ) SC(AQ) − AC | − 750 0 | − 200 − 160 | − 950 − 160 |
MCV | SC(AO) − AC | − 750 | − 360 | − 1,110 |
Simplest
One may use this as the simplest presentation of calculations, since all the amounts used in the formula are present in the working table.If it is for verification purposes, we may avoid the formula column.
Please adopt a presentation based on the examination you are attending, the proportion of marks allotted and time available to/for the problem.