This Paper has

**57**answerable questions with**0**answered.I—12(QNM)Revised Syllabus | |

Quantitative Methods | |

Time Allowed : 3 Hours | Full Marks : 100 |

SECTION I(Mathematical Techniques — 40 marks) |

Arithmetic (15 marks) |

Answer Question No. 1 (compulsory — 10 marks) andtwo other questions (15x2 = 30 marks) from this section. |

1. | Attempt any five of the following: | 2x5=10 | |||||||||||||||||||||||||||||||||||||||||

(a) |
| (0) | |||||||||||||||||||||||||||||||||||||||||

(b) |
| (0) | |||||||||||||||||||||||||||||||||||||||||

(c) |
| (0) | |||||||||||||||||||||||||||||||||||||||||

(d) |
| (0) | |||||||||||||||||||||||||||||||||||||||||

(e) |
| (0) | |||||||||||||||||||||||||||||||||||||||||

(f) | A function f(x) is defined as follows:
For what value of K, f(x) is continuous at x = 3? | (0) | |||||||||||||||||||||||||||||||||||||||||

(g) |
| (0) | |||||||||||||||||||||||||||||||||||||||||

(h) | The average cost function (AC) for a certain commodity is given by
| (0) | |||||||||||||||||||||||||||||||||||||||||

(i) |
| (0) | |||||||||||||||||||||||||||||||||||||||||

(j) | Examine f(x) = x^{3} — 6x^{2} + 9x — 8 for maximum and minimum values. | (0) | |||||||||||||||||||||||||||||||||||||||||

2. | (a) |
| 5 | (0) | |||||||||||||||||||||||||||||||||||||||

(b) |
| 5 | (0) | ||||||||||||||||||||||||||||||||||||||||

(c) | Solve the equations by inverse matrix 2x + y + Z = 1; x – 2y – 3z = 1 and 3x + 2y + 4z = 5. | 5 | (0) | ||||||||||||||||||||||||||||||||||||||||

3. | (a) |
| 5 | (0) | |||||||||||||||||||||||||||||||||||||||

(b) |
| 5 | (0) | ||||||||||||||||||||||||||||||||||||||||

(c) |
| 5 | (0) | ||||||||||||||||||||||||||||||||||||||||

4. | (a) |
| 5 | (0) | |||||||||||||||||||||||||||||||||||||||

(b) | Find the area bounded by the parabola y = 8(x – 1)(4 – 1) and the x–axis. | 5 | (0) | ||||||||||||||||||||||||||||||||||||||||

(c) | Using graph, maximise f = x + 3y subject to 2x + y = 20, x + 2y < 20, x > 0, y> 0. | 5 | (0) | ||||||||||||||||||||||||||||||||||||||||

5. | (a) | Solve the following LPP by simplex method Maximize z = 7x + 5y subject t x + 2y < 6, 4x + 3y < 12 (x,y > 0) | 5 | (0) | |||||||||||||||||||||||||||||||||||||||

(b) | Obtain initial B.F.S. to the transportation problem (T.P.) by NOrth–West corner method :
| 5 | (0) |

SECTION II(Statistical Techniques — 30 marks) |

Answer Question No. 6 (compulsory — 10 marks) and twoother questions (10x2 = 20 marks) |

6. | Answer any five of the following. Choose the correct alternative, stating proper reason. | 2x5=10 | |||||||||||||||||||||||||||||||

(a) | If P(A) = 0.4, P(B) = 0.7, P( at least one of A and B) = 0.8 then p (only one of A and B) is
| (0) | |||||||||||||||||||||||||||||||

(b) | Two unbiased dice are thrown. The probability that the sum of the faces is not less than 10 is
| (0) | |||||||||||||||||||||||||||||||

(c) | 6 unbiased coins are tossed simultaneously. The probability of getting at least 4 heads is
| (0) | |||||||||||||||||||||||||||||||

(d) |
| (0) | |||||||||||||||||||||||||||||||

(e) | Number of observations of a binomial distribution with mean = 4 and variance = 8/3 is
| (0) | |||||||||||||||||||||||||||||||

(f) | If a random variable x follows a Poisson distribution such that prob.(X = 1) = prob.(x = 2) then prob.(x = 0) is
| (0) | |||||||||||||||||||||||||||||||

(g) | Given Σx = 21, Σ y = 20, Σ x^{2} = 91, Σ xy = 75\4, n = 0 from these data, the regression coefficient which you think to be fit is
| (0) | |||||||||||||||||||||||||||||||

(h) | If a random sample of size 5 is drawn without replacement from a finite population of size 41 units with standard deviation as 10, then the standard error of the sample mean is
| (0) | |||||||||||||||||||||||||||||||

(i) | A simple random sample of size 100 has mean 10, the population variance being 16. Then the 95% confidence interval for the mean is
| (0) | |||||||||||||||||||||||||||||||

(j) | If v(x) = v(y) = 1/4 and v(x – y) = 1/3 then the correlation coefficient between random variables x and y is
| (0) | |||||||||||||||||||||||||||||||

7. | (a) | A class consists of 60 students out of which the number of girl students is 10. In the class 2 girls and 6 boys are rank holders in the previous examination. If a student is selected at random from the class and is found to be rank holder. What is the probability that the student selected is a girl? | 5 | (0) | |||||||||||||||||||||||||||||

(b) | The probability that Arun can solve a problem of Geometry is 3/7, Barun can solve it is 2/3 and Mithun can solve it is 4/5. If all of them try independently. find the probability that the problem will be solved | 5 | (0) | ||||||||||||||||||||||||||||||

8. | (a) | A box contains 10 screws of which 5 are defectives. Obtain the probability distribution of the number of defective screws (x) in sample of 4 screws chosen at random and variance(x). | 5 | (0) | |||||||||||||||||||||||||||||

(b) | If the distribution of marks received in an examination is normal. 44% of candidates got marks below 61.4% of candidates got marks above 80, then find the percentage of candidates having got marks above 65 marks.
| 5 | (0) | ||||||||||||||||||||||||||||||

9. | (a) | Following are the marks obtained by 8 students in Mathematics and Statistics papers in an examination. Calculate the spearman’s rank correlation coefficient
| 5 | (0) | |||||||||||||||||||||||||||||

(b) | The equation of two regression lines between two variables are expressed as 2x – 3y = 0 and 4y – 5x – 8 = 0.
| 5 | (0) | ||||||||||||||||||||||||||||||

10. | (a) | A die is thrown 120 times with following results
[Given χ | 5 | (0) | |||||||||||||||||||||||||||||

(b) | For a random sample of size 10 from a normal population, the mean is 10.4 and the s.d. is 2.8. Is it reasonable to suppose that the mean is 12.3? Test at 5% significance level (clearly state the null and alternative hypothesis and assumptions). [Given t_{0.025} at 9 d.f. = 2.262, t_{0.05} at 9 d.f. = 1.833] | 5 | (0) | ||||||||||||||||||||||||||||||

11. | (a) | Apply (i) Maximun (ii) Maximax (iii) Minimax regret to the following pay7ndash;off matrix:
| 5 | (0) | |||||||||||||||||||||||||||||

(b) | For a population comprising the values 1, 3, 5, 7, 9 list all possible sample of size 2 without replacement and show that mean is equal to the population mean. | 5 | (0) |

SECTION III(Economic Techniques — 30 marks) |

12. | Attempt any five of the following: | 2x5=10 | ||||||||||||||||||||||||||||||||||||||||

(a) | If 12% fall in price causes a 25% rise in demand, then find price elasticity of demand and its nature. | (0) | ||||||||||||||||||||||||||||||||||||||||

(b) | The total daily cost (in Rs.) for producing ‘X’ plastic chairs is TC = 25x + 4500 if each chair sells for Rs. 40, find the break even point. | (0) | ||||||||||||||||||||||||||||||||||||||||

(c) | Determine price index for the year 2000 w.r.t. 1990 from following data
| (0) | ||||||||||||||||||||||||||||||||||||||||

(d) | Taking 1960 as base year, CLI of the year 2001 was 250. A person drawing monthly salary of Rs. 750 in 1960 drew Rs. 2000 in 2001 and approached management for increased salary to maintain his standard of living. Should his demand be met and to what extent? | (0) | ||||||||||||||||||||||||||||||||||||||||

(e) | Given r_{12} = 0.5, r_{23} = 0.7 find r_{231} | (0) | ||||||||||||||||||||||||||||||||||||||||

(f) | If r_{12} = 0.7, r_{23} = 0.4 and r_{31} = 0.6, then calculate R_{123} | (0) | ||||||||||||||||||||||||||||||||||||||||

(g) | With which component of a time series would you associate each of the following?
| (0) | ||||||||||||||||||||||||||||||||||||||||

(h) | The trend equation is y = 15 + 0.9141 t with the origin at the midpoint of 1989 and 1990 and t unit = 3/2 year. Find the slope and trend value of 1993. | (0) | ||||||||||||||||||||||||||||||||||||||||

13. | Answer any four of the following | 5x4=20 | ||||||||||||||||||||||||||||||||||||||||

(a) | The demand function for a particular brand of pocket calculator is p = 75 – 0.3Q – 0.05Q^{2}. Find the consumer’s surplus as a quantity of 15 calculators. | (0) | ||||||||||||||||||||||||||||||||||||||||

(b) | From the following series of observations series of observations, calculate the three–yearly moving averages with weights 1, 2, 3 respectively:
| (0) | ||||||||||||||||||||||||||||||||||||||||

(c) | Calculate the price index number of 1996 with 1986 as base year by using (i) Laspeyre’s (ii) Paasche’s and (iii) Fisher’s formulae:
| (0) | ||||||||||||||||||||||||||||||||||||||||

(d) | Fit a trend line of the following data of sales of a commodity in a shop using least square theory and estimate the volume of sales in 1997:
| (0) | ||||||||||||||||||||||||||||||||||||||||

(e) | Given the input matrix and the final demand vector:
| (0) | ||||||||||||||||||||||||||||||||||||||||

(f) | Write short notes on any one of the following: | |||||||||||||||||||||||||||||||||||||||||

(i) | Stratified sampling. | (0) | ||||||||||||||||||||||||||||||||||||||||

(ii) | Cost of living index. | (0) | ||||||||||||||||||||||||||||||||||||||||

(iii) | Parameter and statistic. | (0) |